[MOBI] Materials Processing At Casting

If you ally infatuation such a referred materials processing at casting ebook that will manage to pay for you worth, acquire the completely best seller from us currently from several preferred authors. If you desire to humorous books, lots of novels, tale, jokes, and more fictions collections are then launched, from best seller to one of the most current released.

You may not be perplexed to enjoy all books collections materials processing at casting that we will no question offer. It is not re the costs. Its more or less what you habit currently. This materials processing at casting, as one of the most operational sellers here will unconditionally be in the course of the best options to review.

Materials Processing During Casting-Hasse Fredriksson 2006-05-12 Casting is one of the most important processes in materials technology. In this unique book, each step in the casting and solidification process is described and models are set up, which in many cases can be approximated by simplified analytical expressions. All casting methods are featured, including component casting, ingot casting and continuous casting. Applications of the results are given in numerous worked examples within the text. Conclusions on how to avoid cracks, solidification pores, slag inclusions and other defects of the castings, can be drawn from the theoretical models. These conclusions are based on research results, which together give an idea of the development in the manufacture of castings. Most chapters conclude with a number of exercises, answers to which are given at the end of the book. The accompanying 'Guide to Exercises', provides the complete solutions to each of the exercises.

Materials Processing and Manufacturing Science-Rajiv Asthana 2006-01-09 "Materials Science in Manufacturing focuses on materials science and materials processing primarily for engineering and technology students preparing for careers in manufacturing. The text also serves as a useful reference on materials science for the practitioner engaged in manufacturing as well as the beginning graduate student. Integrates theoretical understanding and current practices to provide a resource for students preparing for advanced study or career in industry. Also serves as a useful resource to the practitioner who works with diverse materials and processes, but is not a specialist in materials science. This book covers a wider range of materials and processes than is customary in the elementary materials science books. * Detailed explanations of theories, concepts, principles and practices of materials and processes of manufacturing through richly illustrated text * Includes new topics such as nanomaterials and nanomanufacturing, not covered in most similar works * Focuses on the interrelationship between Materials Science, Processing Science, and Manufacturing Technology

Proceedings of the Merton C. Flemings Symposium on Solidification and Materials Processing-Merton C. Flemings 2001 This text comprises a collection of papers from the Merton C. Flemings Symposium held on the MIT campus in June, 2000. The papers cover such topics as dendritic solidification dynamics, control of casting quality, interdendritic fluid flow, semisolid processing, and engineering education.

Materials Processing Fundamentals 2020-Jonghyun Lee 2020-01-08 This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related to the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
Modeling for Casting and Solidification Processing-Kuang-Oscar Yu 2001-10-16 This text seeks to provide a comprehensive technical foundation and practical examples for casting process modelling technology. It highlights fundamental theory for solidification and useful applications for industrial production. It also details shape and ingot castings, semi-solid metalworking, and spray forming.

Materials Processing, Unit 10. Casting Processes-Open University

Materials Processing-Lorraine F. Francis 2015-12-28 Materials Processing is the first textbook to bring the fundamental concepts of materials processing together in a unified approach that highlights the overlap in scientific and engineering principles. It teaches students the key principles involved in the processing of engineering materials, specifically metals, ceramics and polymers, from starting or raw materials through to the final functional forms. Its self-contained approach is based on the state of matter most central to the shaping of the material: melt, solid, powder, dispersion and solution, and vapor. With this approach, students learn processing fundamentals and appreciate the similarities and differences between the materials classes. The book uses a consistent nomenclature that allow for easier comparisons between various materials and processes. Emphasis is on fundamental principles that gives students a strong foundation for understanding processing and manufacturing methods. Development of connections between processing and structure builds on students' existing knowledge of structure-property relationships. Examples of both standard and newer additive manufacturing methods throughout provide students with an overview of the methods that they will likely encounter in their careers.

CFD Modeling and Simulation in Materials Processing 2016-Lifeng Zhang 2016-02-08 This collection explores computational fluid dynamics (CFD) modeling and simulation of engineering processes, with contributions from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The papers cover the following processes: Iron and Steelmaking (Tundish, Casting, Converter, Blast Furnace); Microstructure Evolution; Casting with External Field Interaction; and Smelting, Degassing, Ladle Processing, Mechanical Mixing, and Ingot Casting. The collection also covers applications of CFD to engineering processes, and demonstrates how CFD can help scientists and engineers to better understand the fundamentals of engineering processes.

Materials Processing Fundamentals 2019-Guillaume Lambotte 2019-02-09 This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2019 Annual Meeting & Exhibition in San Antonio, Texas. This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related to the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.

Casting: An Analytical Approach-Alexandre Reikher 2007-07-10 For a long time, the die cast industry has used trial and error as a leading contained approach and consistent nomenclature that allow for easier comparisons between various materials and processes. Emphasis on fundamental principles gives students a strong foundation for understanding processing and manufacturing methods. Development of connections between processing and structure builds on students' existing knowledge of structure-property relationships. Examples of both standard and newer additive manufacturing methods throughout provide students with an overview of the methods that they will likely encounter in their careers.
development method, resulting in tremendous growth in the utilisation of available CFD (computational fluid dynamics) software. This software allows the development of better products that maximise the advantages the die cast process has to offer. Casting: An Analytical Approach will refresh knowledge of the governing laws of the fluid dynamics that have an effect on die cast die and die cast process design. MATLAB® (MathWorks, Inc.) and Visual Basic® (Microsoft) code are listed in Casting: An Analytical Approach for every stage of product, die and die cast process design; providing better understanding of die and process design and simplifying calculations of the die cast die as well as the die cast process. Gas ventilation system calculations and fundamentals of compressible gas flow are also included. Readers will learn about: the advantages and limitations of the die cast process; the implications that product design has on the quality of the die cast part; how die cast die and process design can affect the physical properties of the casting; the calculations die cast die and process designers have to do; choosing the die cast machine size and the proper gate size; and how to properly design gas ventilation systems, identify an ideal fill time, and calculate fast and slow shot velocity. The use of MATLAB® and Visual Basic® code to illustrate every stage of the design will help readers to gain a better understanding of the importance of collaboration throughout the entire process. Therefore, Casting: An Analytical Approach will be of interest to product designers who design die cast parts, and die cast die and process engineers and designers.

Concise Encyclopedia of Materials Processing—John Martin 2009 A reference on materials processing that provides information on how processes produce useful products. It offers coverage that includes articles on casting techniques, deformation processing, crystal growth, heat-treatment, machining and joining techniques, as well as the production and consolidation of powders.

Centrifugal Materials Processing—Liya L. Regel 2012-12-06 It is not good to have zeal without knowledge • • • Book of Proverbs This volume constitutes the proceedings of the Third International Workshop on Materials Processing at High Gravity. It offers the latest results in a new field with immense potential for commercialization, making this book a vital resource for research and development professionals in industry, academia and government. We have titled the proceedings Centrifugal Materials Processing to emphasize that centrifugation causes more than an increase in acceleration. It also introduces the Coriolis force and a gradient of acceleration, both of which have been discovered to play important roles in materials processing. The workshop was held June 2-8, 1996 on the campus of Clarkson University in Potsdam, New York, under the sponsorship of Corning Corporation and the International Center for Gravity Materials Science and Applications. The meeting was very productive and exciting, with energetic discussions of the latest discoveries in centrifugal materials processing, continuing the atmosphere of the first workshop held in 1991 at Dubna (Russia) and the second workshop held in 1993 in Potsdam, New York. Results and research plans were presented for a wide variety of centrifugal materials processing, including directional solidification of semiconductors, crystallization of high Tc superconductors, growth of diamond thin films, welding, alloy casting, solution behavior and growth, protein crystal growth, polymerization, and flow behavior. Also described were several centrifuge facilities that have been constructed for research, with costs beginning at below $1000.

Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting—Matthew Krane 2016-12-06

Advanced Materials Processing and Manufacturing—Yogesh Jaluria 2018-05-24 This book focuses on advanced processing of new and emerging materials, and advanced manufacturing systems based on thermal transport and fluid flow. It examines recent areas of considerable growth in new and emerging manufacturing techniques and materials, such as fiber optics, manufacture of electronic components, polymeric and composite materials, alloys, microscale components, and new devices and applications. The book includes analysis,
mathematical modeling, numerical simulation and experimental study of processes for prediction, design and optimization. It discusses the link between the characteristics of the final product and the basic transport mechanisms and provides a foundation for the study of a wide range of manufacturing processes. Focuses on new and advanced methods of manufacturing and materials processing with traditional methods described in light of the new approaches; Maximizes reader understanding of the fundamentals of how materials change, what transport processes are involved, and how these can be simulated and optimized - concepts not covered elsewhere; Introduces new materials and applications in manufacturing and summarizes traditional processing methods, such as heat treatment, extrusion, casting, injection molding, and bonding, to show how they have evolved and how they could be used for meeting the challenges that we face today.

Comprehensive Materials Processing
2014-04-07 Comprehensive Materials Processing provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources.

Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes)
Oksman Kristiina 2014-04-11
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years. The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work. This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set. The four volumes comprise of: The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry. The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives. The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical
modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification. The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefins, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfuralcohol). The most important composite processing technologies are described, including: preforms of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described. This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.

Advances in Materials Processing - Yafang Han
2018-04-17 This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of material surface science, advanced preparation and processing technologies of materials, high purity materials, silicon purification technology, solidification science and technology, performance and structure safety of petroleum tubular goods and equipment materials, materials genomes, materials simulation, computation and design. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.

Solidification and Casting - Brian Cantor
2016-04-19 Written by leading experts in their respective fields, Solidification and Casting provides a comprehensive review of topics fundamental to metallurgy and materials science as well as indicates recent trends. From an industrial perspective, the book begins with chapters on the casting techniques most commonly used in industry today. It then d

Casting Processes - Open University. Materials Processing Course Team 1980

Melt Spinning, Strip Casting, and Slab Casting - Eric F. Matthys 1996 These symposium proceedings present a cross-disciplinary view of current research and practical application of melt-spinning, strip casting, slab casting, and related processes. Both fundamental investigations and factory-floor issues are discussed, including the implementation of new research findings, as well as new approaches and uses for existing technologies.

Materials Processing Technologies - Zheng Yi Jiang 2010-10-27 This collection of 356 peer-reviewed papers is devoted to the topics of casting, forming and machining, processing and joining technologies, evolution of material properties in manufacturing processes, engineering or degradation of surfaces in manufacturing processes, design and behavior of equipment and tools; all seen from the perspective of the latest advances made and their practical application.

Materials Processing Fundamentals 2017 - Antoine Allanore 2018-05-04 Covering the physical and numerical modeling of materials processing, this book includes contributions
across the range of metals and minerals. This collection offers a unique opportunity to present models and results for key processes involved in extraction, joining, separation, and casting of materials. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.

Transport Phenomena in Manufacturing and Materials Processing - W.-J. Yang 2016-01-21
Motivated by international competition and an easy access to high-speed computers the manufacturing and materials processing industry has seen many changes in recent times. New techniques are constantly being developed based on a broad range of basic sciences including physics, chemistry and particularly thermal-fluids sciences and kinetics. In order to produce and treat massive products, the industry is also in need of a very wide range of engineering knowledge and skill for integrating metallurgy, mechanics, electricity, transport phenomena, instrumentation and computer control. This monograph covers a part of these demands, namely by presenting the available knowledge on transport phenomena in manufacturing and materials processing. It is divided into four parts. Part I deals with the fundamentals of transport phenomena, including the transfer of momentum, energy, mass, electric and magnetic properties. Parts II and III are concerned with applications of the fundamentals in transport phenomena occurring in manufacturing and materials processing, respectively. Emphasis has been placed on common aspects of both disciplines, such as forming, machining, welding, casting, injection molding, surface processes, heating and cooling, solidification, crystal growth and diffusion. Part IV deals with beam technology and microgravity, two topics of current importance.

TMS 2012 141st Annual Meeting and Exhibition, Materials Processing and Interfaces - The Minerals, Metals & Materials Society (TMS) 2012-05-02
Contains papers relating to materials processing and interfaces presented at various symposia at the 2012 TMS Annual Meeting.

Porous Materials - Peisheng Liu 2014-08-12
Engineers and scientists alike will find this book to be an excellent introduction to the topic of porous materials, in particular the three main groups of porous materials: porous metals, porous ceramics, and polymer foams. Beginning with a general introduction to porous materials, the next six chapters focus on the processing and applications of each of the three main materials groups. The book includes such new processes as gel-casting and freeze-drying for porous ceramics and self-propagating high temperature synthesis (SHS) for porous metals. The applications discussed are relevant to a wide number of fields and industries, including aerospace, energy, transportation, construction, electronics, biomedical and others. The book concludes with a chapter on characterization methods for some basic parameters of porous materials. Porous Materials: Processing and Applications is an excellent resource for academic and industrial researchers in porous materials, as well as for upper-level undergraduate and graduate students in materials science and engineering, physics, chemistry, mechanics, metallurgy, and related specialties. A comprehensive overview of processing and applications of porous materials - provides younger researchers, engineers and students with the best introduction to this class of materials Includes three full chapters on modern applications - one for each of the three main groups of porous materials Introduces readers to several characterization methods for porous materials, including methods for characterizing pore size, thermal conductivity, electrical resistivity and specific surface area

Eco-Materials Processing and Design X - Hyung Sun Kim 2009-04-28
The aim of this special volume is to give an overview of the historical background and present status of eco-materials processing and design for materials research, and to foresee future trends in the field. Serious global and environmental problems have led the materials manufacturing industries to monitor closely the formation and accumulation of carbon dioxide and other deleterious gases in the atmosphere, as well to reduce raw materials use and energy consumption and limit other factors which reflect the environmental impact of the industry. Volume is indexed by Thomson Reuters CPCI-S (WoS).

Separation Technologies for the Industries of the Future - National Research Council 1999-02-08
Separation processes or processes
that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.

Campbell Symposium on Shape Casting- Murat Tiryakioğlu 2006

Complete Casting Handbook-John Campbell 2015-08-06 Campbell’s Complete Casting Handbook: Metal Casting Processes, Techniques and Design, Second Edition provides an update to the first single-volume guide to cover modern principles and processes in such breadth and depth, while also retaining a clear, practical focus. The work has a unique viewpoint, interpreting the behavior of castings, and metals as a whole, in terms of their biofilm content, the largely invisible casting defects which control much of the structure and behavior of metals. This new edition includes new findings, many from John Campbell’s own research, on crack initiation, contact pouring, vortex gates, and the Cosworth Process. Delivers the expert advice that engineers need to make successful and profitable casting decisions Ideal reference for those interested in solidification, vortex gates, nucleation, biofilm, remelting, and molding Follows a logical, two-part structure that covers both casting metallurgy and casting manufacture Contains established, must-have information, such as Campbell’s ‘10 Rules’ for successful casting manufacture Includes numerous updates and revisions based on recent breakthroughs in the industry

CFD Modeling and Simulation in Materials Processing 2016-Laurentiu Nastac 2017-08-31

Introduction to Manufacturing Processes and Materials-Robert Creese 2017-12-19 The first manufacturing book to examine time-based break-even analysis, this landmark reference/text applies cost analysis to a variety of industrial processes, employing a new, problem-based approach to manufacturing procedures, materials, and management. An Introduction to Manufacturing Processes and Materials integrates analysis of material costs and process costs, yielding a realistic, effective approach to planning and executing efficient manufacturing schemes. It discusses tool engineering, particularly in terms of cost for press work, forming dies, and casting patterns, process parameters such as gating and riser design for casting, feeds, and more.

Casting Design and Performance- 2009

Principles of Laser Materials Processing- Elijah Kannatey-Asibu, Jr. 2009-04-22 Coverage of the most recent advancements and applications in laser materials processing This book provides state-of-the-art coverage of the field of laser materials processing, from fundamentals to applications to the latest research topics. The content is divided into three succinct parts: Principles of laser engineering-an introduction to the basic concepts and characteristics of lasers, design of their components, and beam delivery Engineering background-a review of engineering concepts needed to analyze different processes: thermal analysis and fluid flow; solidification of molten metal; and residual stresses that evolve during processes Laser materials processing-a rigorous and detailed treatment of laser materials processing and its principle applications, including laser cutting and drilling, welding, surface modification, laser forming, and rapid prototyping Each chapter includes an outline, summary, and example sets to help readers reinforce their understanding of the material. This book is designed to prepare graduate students who will be entering industry; researchers interested in initiating a research program; and practicing engineers who need to stay abreast of the latest developments in this rapidly evolving field.
Unit Manufacturing Processes-National Research Council 1995-01-03 Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.

Modeling in Materials Processing-Jonathan A. Dantzig 2001-11-12 Mathematical modeling and computer simulation are useful tools for improving materials processing. While courses in materials processing have covered modeling, they have traditionally been devoted to one particular class of materials, that is, polymers, metals, or ceramics. This text offers a different approach, presenting an integrated treatment of metallic and non-metallic materials. The authors show that a common base of knowledge - specifically, the fundamentals of heat transfer and fluid mechanics - provides a unifying theme for these seemingly disparate areas. Emphasis is placed on understanding basic physical phenomena and knowing how to include them in a model. The book also treats selected numerical methods, showing the relationship between the physical system, analytical solution, and the numerical scheme. A wealth of practical, realistic examples are provided, as well as homework exercises. Students, and practising engineers who must deal with a wide variety of materials and processing problems, will benefit from the unified treatment presented in this book.

Flow Visualization in Materials Processing-Tomomasa Uemura 2017-10-05 This book presents a comprehensive review of particle image velocimetry (PIV) and particle tracking velocimetry (PTV) as tools for experimental fluid dynamics (EFD). It shares practical techniques for high-speed photography to accurately analyze multi-phase flows; in particular, it addresses the practical know-how involved in high-speed photography, including e.g. the proper setup for lights and illumination; optical systems to remove perspective distortion; and the density of tracer particles and their fluorescence in the context of PIV and PTV. In this regard, using the correct photographic technique plays a key role in the accurate analysis of the respective flow. Practical applications include bubble and liquid flow dynamics in materials processes agitated by gas injection at high temperatures, mixing phenomena due to jet-induced rotary sloshing, and wettability effects on the efficiency of the processes.

Direct Strip Casting of Metals and Alloys-M Ferry 2006-03-24 Direct strip casting is a continuous casting process for producing metallic sheet directly from the molten state that minimises the need for substantial secondary processing. This important book is the first to review the implications of strip casting technology for a range of alloys, including carbon and stainless steel, aluminium, magnesium, titanium, copper and other non-ferrous alloys. The book is divided into six chapters, with the first two describing the physical metallurgy of candidate alloys for direct strip casting and the development of microstructure during solidification. Chapter 3 describes the principles of continuous casting processes and the evolution of direct strip casting. It provides the foundation for the following two chapters which describe process variables and their impact on microstructure and strip quality. The final chapter describes possible techniques in secondary processing and fabrication of the as-cast strip. Two appendices discuss simulation and modelling issues, and the measurement and representation of textures in metal strip. Direct strip casting of metals and alloys is a standard reference on a technology destined to have a profound impact on the manufacturing landscape of the twenty-first century. First book to review the implications of strip technology for a range of alloys Essential book on a technology destined to have a profound impact on the manufacturing landscape of the twenty-first century

Materials Processing Handbook-Joanna R. Groza 2007-03-28 The field of materials science and engineering is rapidly evolving into a science
of its own. While traditional literature in this area often concentrates primarily on property and structure, the Materials Processing Handbook provides a much needed examination from the materials processing perspective. This unique focus reflects the changing comple